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A METHOD FOR OBTAINING BENCHMARK
NAVIER–STOKES SOLUTIONS
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SUMMARY

A refinement to an established method for obtaining benchmark Navier–Stokes solutions is presented.
Pressure and body forces are derived explicitly such that the momentum equations are satisfied. The
problem is reduced to determining a streamfunction in separation of variables form that describes a
desired flow pattern. Examples based upon the well-known shear flow cavity are presented. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Benchmarking, i.e. testing and validation of numerical flow codes, remains an important task
in computational fluid dynamics [1–3]. An integrated approach, including comparison of
independent results with corresponding numerical outputs, is employed by most practitioners.
Analytical solutions play a role in this process, typically serving as a necessary but not
sufficient condition for code approval. For example, because analyses are limited in terms of
geometric and flow complexity, they usually act only as basic test cases and must be
augmented by additional trials based upon other data, especially experimental measurements.

Each class [4,5] of analytical flow solutions has additional limitations with respect to the
benchmarking problem. For example, a unidirectional flow configuration cannot be used for
studying numerical convection schemes since the fluid motion is described by only a few
viscous terms. Similarity solutions usually lack natural scales and therefore truncation of the
numerical domain is necessary. Beltrami flows are periodic, again requiring an appropriately
truncated domain. This class also does not admit realistic boundary conditions, such as the
no-slip surface [6].

For the purpose of benchmarking, Shih [7] and co-workers [8] realized that adding a body
force to the momentum equations as a degree of freedom allows for solutions on finite
domains with no-slip boundary conditions. Several solutions based upon the shear cavity
configuration introduced by Burggraf [9] were derived. In this note, an improved procedure for
integrating the pressure is presented. Solutions for a cavity-like configuration are derived as
examples.
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2. SOLUTION PROCEDURE

The stationary incompressible Navier–Stokes equations are cast in the following form:
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For two dimensions, Cartesian co-ordinates are xj= (x, y), velocity components are uj= (u, 6),
P is pressure, Re is the Reynolds number, and body force components are hj= (hx, hy).

As in Shih’s method, a streamfunction in separation of variables form is assumed, c=
−f ·g, where f= f(x) and g=g(y) are univariate ‘kernel’ functions. Velocity components are
then given by u= − f ·g % and 6= f % ·g, where the prime symbol indicates differentiation. A
desired flow pattern is obtained by choosing appropriate kernel functions. Furthermore, an
arbitrary pressure distribution is specified in Shih’s method. Body force hj, the degree of
freedom, must be determined by back-substituting velocity and pressure and solving the
complete momentum equations, a tedious procedure. However, with the present method, both
hj and P are determined explicitly as functions of f and g, simplifying the problem. This occurs
as follows.

In shorthand notation, the momentum equations can be expressed as (P/(x=E+hx and
(P/(y=F+hy, where E=E(x, y, Re) and F=F(x, y, Re) encompass convective and viscous
effects. Integrating these expressions implies P=	 (E+hx) dx=	 (F+hy) dy. The body force
must be chosen such that both expressions yield the same pressure distribution. This problem
is underdetermined since there are two unknowns, the components of hj, and only one
equation. Therefore, hj can be specified such that 	 E dx=	 hy dy and 	 F dy=	 hx dx. These
expressions can be shown to give the following results for the body force components and
pressure distribution.
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3. EXAMPLE CONFIGURATION

A matching strategy is used to determine f and g for a given problem configuration. Boundary
conditions are separated and the appropriate kernel function is evaluated, resulting in a set of
constraint equations for f and g. As an example, a shear cavity problem is discussed.

The boundary is a square formed by x= (0, 1) and y= (0, 1), and the y=1 surface moves
laterally. The four boundary surfaces and two velocity components yield a total of eight
boundary conditions. Using the matching process, a total of eight constraint equations can be
derived: f=0 and f %=0 for x= (0, 1), g=0 for y= (0, 1), g %=0 for y=0, and g %"0 for
y=1. Polynomials can be adapted to these constraints. For example, a third-order polynomial
can be utilized for g because one of the constraints is non-trivial: g=y3−y2. For f, a
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fourth-order polynomial is used since all constraints are trivial: f= −x2+2x3−x4. All flow
quantities can subsequently be derived.

c= (y3−y2) ·(x2−2x3+x4), (6)

P= (−1.5y4+2y3−y2) ·(x8−4x7+6x6−4x5+x4)

+ (y6−2y5+y4) ·(−2x6+6x5−7x4+4x3−x2)

+
(1−2x) ·(3y4−4y3)+2x3−3x4+1.2x5

Re
, (7)

hx= (−2x+12x2−28x3+30x4−12x5) ·(y6−2y5+y4)

+
(3y2−2y) ·(−2+12x−12x2)−6y4+8y3

Re
, (8)

hy= (x8−4x7+6x6−4x5+x4) ·(−2y+6y2−6y3)+
(6y−2)·(2x−6x2+4x3)

Re
. (9)

The overall flow pattern is a single standing vortex, symmetric about x=0.5. A quick check
indicates that all boundary conditions are satisfied. Unlike the Burggraf configuration [9],
there are no velocity singularities at the two junctions where the moving lid meets the fixed
walls. The solution is entirely smooth. While many of the popular Navier–Stokes benchmarks
are likewise smooth, caution must be used when applying these solutions to certain models,
such as unstable finite elements, for which numerical problems may remain hidden. Moreover,
accuracy and convergence for Equations (6)–(9) should not be taken as representative of
Burggraf’s physical problem.

Although c is independent of Re for this problem, higher-order expressions can be used to
incorporate an explicit dependence upon the Reynolds number. For example, let f be described
by the following fifth-order polynomial:
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The quantity df is x0 ·(5x0
2−8x0+3) and 0Bx0B1 is an arbitrary location where f=0.

Equation (10) satisfies all of the constraints mentioned above.
Now assume that a solution valid for 0BReB100 is desired. The value x0=0.01·Re can be

substituted into Equation (10) to yield a new kernel function f= f(x, Re). (Note that no flow
is defined for Re=60, since df vanishes at this value.) Different flow patterns develop
depending upon Re. For example, at Re=50, the motion forms a single vortex; however, at
Re=80, there are two weaker counter-rotating vortices.

4. CONCLUSION

A refinement to Shih’s method of deriving solutions for code benchmarking has been
presented. All flow quantities including pressure are given explicitly in terms of kernel
functions. The problem is, therefore, reduced to deriving appropriate functions to obtain a
desired flow pattern. A shear cavity configuration was used to show both Re-independent and
Re-dependent examples.

While this method may show potential for practical usage, it is again emphasized that
analytical solutions have important limitations with respect to the benchmarking problem.
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Therefore, an integrated approach remains the best choice for reliably benchmarking numeri-
cal codes.
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